On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces *
نویسندگان
چکیده
Given a bounded operator A on a Banach space X with Drazin inverse A and index r, we study the class of group invertible bounded operators B such that / + A (B — A) is invertible and 1Z(B) f]N(A) = {0}. We show that they can be written with respect to the decomposition X = lZ(A) 0 Af(A) as a matrix operator, B = ( _ _ __i _ ), where B\ and B\ + B\9#?1 a r e invertible. ^ if21 t>2\tf\ i*\2 Several characterizations of the perturbed operators are established, extending matrix results. We analyze the perturbation of the Drazin inverse and we provide explicit upper bounds of \\B$ — A \\ and \\BB$ — AA\\. We obtain a result on the continuity of the group inverse for operators on Banach spaces.
منابع مشابه
ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS
In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کامل$G$-Frames for operators in Hilbert spaces
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملSome Properties of Fuzzy Norm of Linear Operators
In the present paper, we study some properties of fuzzy norm of linear operators. At first the bounded inverse theorem on fuzzy normed linear spaces is investigated. Then, we prove Hahn Banach theorem, uniform boundedness theorem and closed graph theorem on fuzzy normed linear spaces. Finally the set of all compact operators on these spaces is studied.
متن کامل